Usage of the Kalman Filter for Data Cleaning of Sensor Data

نویسندگان

  • Klemen Kenda
  • Jasna Škrbec
  • Maja Škrjanc
چکیده

This paper presents a methodology for data cleaning of sensor data using the Kalman filter. The Kalman filter is an on-line algorithm and as such is ideal for usage on the sensor data streams. The Kalman filter learns parameters of a user-specified underlying model which models the phenomena the sensor is measuring. Usage of the Kalman filter is proposed to predict the expected values of the measuring process in the near future and to detect the anomalies in the data stream. Furthermore the Kalman filter prediction can be used to replace missing or invalid values in the data stream. Algorithm only requires sensor measurements as an input, which makes it ideal to be placed as near to the resource tier in the N-tier architecture as possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter

This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...

متن کامل

A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant

This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter...

متن کامل

Implementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter

In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...

متن کامل

Attitude Estimation of Nano-satellite according to Navigation Sensors using of Combination Method (TECHNICAL NOTE)

The purpose of this paper is to attitude estimation of Nano-satellite which requires navigation sensors data to less cost function and effection movement of Nano-satellite focus of the research is to using data of navigation sensors and methods to achieve the requirement of the attitude estimation. in this paper the following attitude estimation of the according to direction of sun of the Nano-...

متن کامل

A New Comprehensive Sensor Network Design Methodology for Complex Nonlinear Process Plants

This paper presents an optimal integrated instrumentation sensor network design methodology for complex nonlinear chemical process plants using a Combinatorial Particle Swarm Optimiazation (CPSO) engine. No comprehensive sensor network design approach has been addressed yet in the literature to simultaneously incorporate cost, precision and reliability requirements for nonlinear plant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013